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1. INTRODUCTION 

The stability of two-phase flow models is a topic of current interest (Prosperetti & Satrape 1990). 
In Geurst (1985) the author developed a macroscopic theory of bubbly flow by starting from a 
properly extended form of Hamilton's variational principle. The inertial interaction of the bubbles 
associated with their virtual mass was taken into account explicity [see the review paper by Wallis 
(1989)]. Marginal stability could be achieved by taking a simple expression for the virtual-mass 
coefficient m(O as a function of the void fraction E, viz. 

re(e) =½c(1 -- Q(1 - 3c), [1] 

in the case of spherical bubbles. 
Kok (1988) showed that in a frame of reference moving with the volume velocity of the bubbly 

mixture--a reference frame being used by van Wijngaarden and his group at Twente University-- 
the marginal stability criterion takes the still simpler form 

k(O = ½E. [2] 

Note that k(e) is equal to the quantity K*(Q considered by van Wijngaarden (1991, this issue, 
pp. 809-814). For the proper definition of k(O see [19] below. 

van Wijngaarden (1991), basing himself on Kok's result [2], argues that the stability criterion 
[1] should be related to the neglect of bubble interactions. It is demonstrated in section 3, however, 
that his argument relies on expressions for the virtual mass and impulse of a bubble dispersion that 
are not acceptable from a physical point of view. Before, in section 2, the system of macroscopic 
equations for bubbly flow is reviewed briefly. It is shown in section 4 that the analysis of non-linear 
concentration waves in Geurst & Vreenegoor (1988) provides a physical explanation of Kok's 
result. 

2. MACROSCOPIC EQUATIONS FOR BUBBLY FLOW 

The system of two-phase flow equations for a bubbly mixture comprises both kinematic and 
dynamic equations. The kinematic equations expressing, respectively, the conservation of mass of 
the two phases and the conservation of bubble number read in one-dimensional form 

c~pi c~ 
c1"--[ + -~x (PM~) = 0 ( i  = 1, 2) [31 

and 

On c~ 
Ot + ~x (nu2) = O. [4] 
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Here p~ = pL(1 --C) and P2 = PG E, while n represents the number density of  the bubbles and u~ 
(i = 1, 2) denote the mass-averaged velocities of, respectively, the liquid and the gas phase. When 
dissipative effects are disregarded, the dynamic equations may be derived from a macroscopic form 
of Hamilton's variational principle (Geurst 1985, 1986; Geurst & Vreenegoor 1987). Let us assume 
that: (i) the liquid is incompressible; (ii) the flow proceeds isothermally; and (iii) the bubbles are 
nearly spherical. In that case the dynamic equations take the following form (cf. Wallis 1989, 1990): 

drq + 0 [Ulnl+½m'(Q(u2--ut)2--½u~]= 1 ~p* 
0-5- 0x PL gX + F~, [5] 

for the macroscopic motion of the continuous liquid phase; and 

Ore 2 0 1 2 1 Op* +F2,  [6] 
0--7- + ~xx (u2rr2 - ~u2) = Pc 0x 

for the motion of the disperse gas phase. Note that m '(E) = (d/dE)m (c). The pressure p * is given by 

2or 
P* = PG - - - ,  [7] a 

where p6 indicates the gas pressure, a denotes the surface tension coefficient of the liquid/gas 
interface and a represents the average bubble radius. The quantities F~ (i = 1, 2) are specific body 
forces including mutual friction forces acting between the two phases. For more general dissipative 
forces see Geurst (1985) and Vreenegoor (1990). The quantities ni(i = 1, 2) which play a prominent 
role in [5] and [6], constitute the specific generalized momenta of, respectively, the liquid and the 
gas phase. They are determined by means of the following expressions for the generalized 
momentum densities P~(i = 1, 2) of  the two phases: 

Pl  = Pl/~l = p l U l  - -  pLm(e)(u2 - -  Ul) [8a] 

and 

P2 = P2 ~Z2 = p2u2 + pL m(e )(u2 -- ul ). [8b] 

While the first terms on the r.h.s, of  [8a, b] evidently equal the "true" momentum densities of the 
liquid and the gas phase, the second terms having opposite signs represent the impulse or 
pseudo-momentum densities that are associated with the relative motion of the two phases. The 
fundamental quantity m(e), which was called the virtual-mass coefficient in Geurst (1985), is 
introduced by means of the expression for the kinetic energy density K, viz. 

2 
K =  Z l 2 " i p i u ,  q- ½PLm(E)(U2 U,) 2. [9] 

i=l 

The last term in [9] represents the kinetic energy of the "backflow" velocity field induced in the 
liquid by the relative motion of  the bubbles. Note that the part of K that is associated with the 
liquid is non-negative iff re(E)>/0. A thorough analysis (Geurst 1985, 1986; Wallis 1989) shows 
that the average total pressure p is given by 

P = P* + ½pg( 1 _ e) 2 d de E(e )(u2 - Ul )2, [10] 

where E(e) is the exertia introduced by WaUis (1989) according to 

m(e)  [ll] 
E(O = 1 - e" 

When the body forces F~(i = 1, 2) vanish, a uniform two-phase flow is marginally stable with respect 
to small perturbations iff (Geurst 1985; Prosperetti & Satrape 1990) 

m(e)  = ½e(1 -- e)[rh - (rh + 2)¢1. [121 

In the case of spherical bubbles (rh = 1) expression [12] reduces to [1]. 
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3. DYNAMICS OF BUBBLE DISPERSION 

Let us start with confining the attention to the special case of a homogeneous  bubble dispersion, 
because it constitutes the simplest situation in which the dynamical effects associated with the 
impulse and the virtual mass of the bubbles are perceptible. Since the condition of  homogeneity 
requires that the spatial derivatives of all quantities other than the pressure vanish, the kinematic 
equations [3] and [4] reduce to 

OE _ Opo =--On = 0. [13] 
Ot Ot Ot 

Various frames of reference may be selected for the dynamical analysis of a bubble dispersion. We 
consider here only (i) the laboratory frame of reference used in section 2 and (ii) the reference frame 
moving with the volume velocity of the bubbly mixture which is being employed by van 
Wijngaarden and his group. 

(/) It will be clear from [8b] and [9] that in the laboratory frame of reference 

ul 

This is in accordance with Goldstein (1980, p. 563) and various other textbooks like Landau & 
Lifshitz (1962). 

(ii) The volume velocity u0 is defined by 

u0 = (1 - E)ul + Eu2. [15] 

It is easily verified that the generalized momentum densities Pi( i  = 1, 2) given by [8a, b] may be 
expressed in terms of Uo and u2 in the following way: 

P, = Pl Uo - pL[E(£) -F E](U2 -- Uo) 

and 

PE = p2u2 + pL E ( Q ( u 2  -- uo). 

[16a] 

[16b] 

In the case of an homogeneous bubble dispersion the dynamic equations [5] and [6], accordingly, 
take the form 

o Op 
0-t {Pl U0 --  p L [ E ( E )  + El(u2 --  U0)} = - (1  - -  E) ~xx + p '  FI  [171 

and 

0 0p 
ot {p2u~ + pLe(O(u2 - u0)} = - ,  ~ + pW~. [181 

With a view to the use of a frame of reference moving with the volume velocity the kinetic energy 
density K given by [9] may be written as [see Kok (1988)]: 

K = ½PU 2 + (Pc - pL)EUo(U2 -- UO) + ½[P2 + pLk(E)](U~ -- UO) 2, [191 

where p = P l + P: and 

m ( O  E ~ E ( O  + E 2 
k (E) = ~ + ~ = [20] 

(1 - 1 - E  1 - E  

It is easily recognized that the quadratic form for the kinetic energy density associated with the 
liquid which appears in [19] is non-negative definite iff 

(1 - Q k ( O  - E2 i> 0 .  [ 2 1 ]  

That condition is clearly equivalent to m(O >t 0. The quantity M(E) = k(E)/E is considered by van 
Wijngaarden (1991) as the proper virtual-mass coefficient of a bubble dispersion. 
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We remark that 

( OK) = _ pL EUo + p2U2 + pL k(  E )(u2 _ U0)" [22] 
\ ~ " 2 /  uo 

Comparing [16b] and [22] we conclude that 

u0 

Indeed, the equality sign holds in [23] iff u0 = 0 and k(Q = -E.  That last expression, however, is 
not allowed according to [21]. A Galilean tranformation applied to [22] shows that the r.h.s. 
contains contributions from the true momenta of both the liquid and the gas phase, while P2 
comprises the true momentum of the bubbles only. 

It follows from [20] that, in general, k(E) does not vanish when the backflow energy may be 
disregarded, i.e. when re(c) - 0 like in the case of stratified flow. This is caused by the fact that 
k (E) contains an additional contribution originating from the kinetic energy of  the mass-averaged 
motion of  the liquid. The quantity k(E) /e  is accordingly not an acceptable candidate for a 
virtual-mass coefficient, van Wijngaarden (1991), however, puts it in the forefront as the proper 
quantity for the analysis of  virtual-mass effects. 

Eliminating the pressure gradient between [17] and [18] and taking F; = - g  + F; (i = 1,2), where 
g denotes the gravitational acceleration, we obtain 

0 
0 t  [p2U2 + pLk(£ )(U2 -- uO) -- pLEU0] = £(PL - -  PC)g + E(pcF'2 -- pLF~). [24] 

Note that the expression between square brackets equals (OK/0u2).o by virtue of  [22]. The 
corresponding evolution equation for u0 is also obtained from [17] and [18]. It reads 

0t {[p + •(¢)P2lu0} = Ox Pg + PIF~ + p2F'z + Z(e)  - E  3 x  - Pzg + p2F'2 , [25] 

where 

[261 

More generally, going beyond the limitation set by the condition of homogeneity, we obtain by 
eliminating the pressure gradient between the original equations of  motion [5] and [6] and then 
taking Pc = constant the following equation generalizing [24]: 

0 
Ot [¢PGU2 + pLk(e ) (u2  -- Uo)] + 0-~ {u2[¢pGu2 + pLk(¢)(U2 -- Uo)]} 

o f , 2d Fk(E)3, 0 
+~X ~ - ~pL ¢ -~¢ L--- ~ -  J(u2 - Uo) ; - ¢ Ot (PL U°) = E(pL -- Pc )g  + E(pGF~ -- pL F;  ). [27] 

This equation is, as far as inertial effects are concerned, very similar to equation [41] of Biesheuvel 
& Gorissen (1990). The third term on the l.h.s., however, seems to be new. It is remarkable that 
the expression in braces in the third term on the 1.h.s. of [27], playing the role of an "effective" 
pressure, vanishes when k(E) satisfies [2] in the case of marginal stability. The fact, however, that 
according to the analysis of  Biesheuvel & Gorissen (1990) the "effective" pressure vanishes when 
the spatial fluctuations of the bubble velocities are disregarded, does not  imply that, conversely, 
the bubble velocity fluctuations have to disappear when the "effective" pressure vanishes. 

It is interesting to note in this connection that van Wijngaarden & Biesheuvel (1988) erroneously 
omit the spatial derivative of the "effective" pressure in their [3.4]. Because their stability analysis 
is based on that equation, the resulting stability criterion, which is reproduced in van Wijngaarden 
(1991) by inequality [7], is not correct. Note that the quantity M(E) appearing in that criterion is, 
according to our notation, equal to k (E)/E. In fact, omission of  the "effective" pressure term implies, 
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by virtue of [27], that M(Q is taken constant, van Wijngaarden & Biesheuvel (1988) therefore 
assume implicitly the validity of the marginal stability criterion [2]. Inequality [7] of van 
Wijngaarden (1991), however, imposes an additional restriction on the functional form of M(E) 
which clearly is at variance with [2], when the mutual friction between the two phases is taken into 
account. 

We emphasize that bubble interactions and bubble velocity fluctuations should be distinguished 
clearly. In fact, bubble interactions remain effective also in the hypothetical case, where the spatial 
fluctuations of the bubble velocities vanish and the local velocities of the bubbles are accordingly 
all equal, because the velocity fields induced by the separate bubbles in the surrounding liquid affect 
each other also in that case. It should be realised in that context that a random distribution of 
bubbles with e q u a l  bubble velocities is the situation envisaged by Kok (1988) and Biesheuvel & 
Spoelstra (1989) for analysing the effect of bubble interactions on the virtual mass of a bubble 
dispersion. 

It may be added that the frame of reference moving with the volume velocity u0 is in general 
n o t  an inertial frame of reference. That is the reason for the appearance of the last term on the 
l.h.s, of [27]: it represents an apparent force accounting for a possible non-uniform motion of the 
reference frame. 

Like van Wijngaarden (1991) is doing in his note, Biesheuvel & Gorissen (1990) are considering 
k(E)/E as the virtual-mass coefficient of a bubble dispersion [more specifically m0(E) which equals 
2k(E)/E]. That, however, is not allowed for physical reasons, as we pointed out earlier. In fact, [27] 
is not the equation of motion of the gas phase. It results as we have seen, from combining the 
equations of motion of bo th  phases, the gas phase a n d  the liquid phase. 

van Wijngaarden (1991) introduces the quantity I which he calls the "Kelvin impulse" of a 
bubble dispersion. He takes Pc = 0 and considers a moment at which u0 = 0. Assuming that the 
bubble velocities are equal, he derives that 

I = = p L k ( Q ( u 2  - Uo). [28] 
u 0 

Since in that particular case the impulse density of the bubble dispersion is, according to [16b], 
given by 

P2 = PL E (E) (u2 -- u0), [291 

we conclude that, in accordance with [23], 

I ~ P2. [30] 

van Wijngaarden (1991), however, identifies his quantity I with the impulse density of a bubble 
dispersion. That is clearly not correct. 

4. V O ID-FRACTION DISTURBANCE AS A K I N E M A T I C  WAVE 

The simple form [2] taken by the marginal stability criterion deserves an explanation. Let us 
consider a homogeneous bubble dispersion in which the void fraction E suffers a one-dimensional 
disturbance. It will be natural to assume that the mass density of the gas and the average bubble 
radius remain unaffected by the disturbance. The three kinematic equations [3] and [4] then require 
in the case of a uniformly propagating void-fraction disturbance that 

C 
= = , [31] u2 const, Ul u2 1--E 

where c denotes a constant (Geurst & Vreenegoor 1988). By virtue of conditions [31], each 
kinematic equation reduces to the equation (0 

+ u2 E = 0, [32] 

[JMF 17/6--I 
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which has the general solution E = E(x - Uzt). It follows from [31] also that u I = U l ( X  - -  Uzt). It is 
immediately inferred from [31] that 

u0 = u2 - c. [33] 

The volume velocity u0 is, accordingly, a quantity independent of position and time. Under the very 
special conditions considered a reference frame moving with the volume velocity therefore appears 
like an inertial frame of reference. 

It is shown in detail by Geurst & Vreenegoor (1988) that, body forces being disregarded and 
[31] being fulfilled, the two dynamic equations [5] and [6] both reduce to [32] iff the virtual-mass 
coefficient m(E) satisfies [I]. The marginal stability criterion expressed by [1] or [2] accordingly 
constitutes a necessary and sufficient condition for the identical fulfilment of the dynamic equations 
in the case, where the kinematic equations are already satisfied according to [31] and [32]. It may 
therefore be considered as a critical condition for the kinematic wave character of void-fraction 
disturbances. 

It should be emphasized that the analysis in this section is confined to the non-dissipative 
behaviour of a void-fraction disturbance in a bubbly flow without buoyancy. When gravity 
and mutual friction forces are taken into account, as in [5] and [6], the condition for stability 
of a uniform bubbly flow might be modified. In particular, the propagation velocity of a 
void-fraction disturbance might deviate from the drift velocity of the bubbles (cf. Prosperetti & 
Satrape 1990). 

Because the two dynamic equations both reduce to [32] under kinematic wave conditions, 
all equations derived from them have that property. Indeed, inspection shows that [27] 
reduces to [32] when the body forces on the r.h.s, are neglected, conditions [31] are fulfilled 
and k(E) satisfies the marginal stability criterion [2]. It is easily recognized that, in the case 
of spherical bubbles, [2] is not only sufficient but also necessary for a reduction of [27] 
to the kinematic wave equation [32]. That result shows that the simple form [2] taken by the 
marginal stability criterion is closely related to the kinematic wave character of void-fraction 
disturbances. 

It will be clear that the marginal stability criterion has nothing to do with the neglect of bubble 
interactions. In fact, it means that dynamic effects that might cause instabilities are suppressed. 
That is the reason, why the "effective" pressure appearing in [27] vanishes on account of [2]. The 
vanishing of the "effective" pressure might be achieved microscopically by a proper distribution 
of the positions and velocities of the bubbles. It would be interesting to determine such a local 
distribution of the bubbles. 

5. CONCLUSION 

It has been demonstrated that the expressions for the impulse and virtual mass of a bubble 
dispersion used by van Wijngaarden and his group are not acceptable from a physical point of view. 
The argument advanced by van Wijngaarden (1991) that the form k(E)= E/2 of the marginal 
stability criterion might be related to the neglect of bubble interactions is based on those expressions 
and is therefore not correct. 

It turns out that an alternative stability criterion put forward by van Wijngaarden & Biesheuvel 
(1988) is incorrect because it has been obtained by erroneously omitting the "effective" pressure 
derived in section 3. The expression for the "effective" pressure seems to be new. 

The analysis of void-fraction waves given in Geurst & Vreenegoor (1988) proved to be 
helpful in clarifying the physical background of the marginal stability criterion of the author. 
It appeared that the frame of reference employed by van Wijngaarden and his group, 
although unsuitable for the analysis of dynamic properties like the impulse and virtual mass of a 
bubble dispersion, might be used profitably for describing kinematic phenomena like void-fraction 
waves. 

Acknowledgements--The author is indebted to R. F. Mudde and A. J. N. Vreenegoor for a number of useful 
comments. 
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